Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering

BEC702 Digital CMOS VLSI Seventh Semester (2017-2018) Odd semester

Course (catalog) description

CMOS is important to learn as it is a basic integrated circuit technology due to its low power (at moderate frequencies), good scalability, and rail-to-rail operation. In this course, the reader is systematically introduced to the entire range of CMOS circuit design, starting with individual CMOS, basic circuit building blocks, and broad view of both combinational and sequential circuits.

Compulsory/Elective course: Compulsory for ECE students

Credit & contact hours : 4 & 60

:

Course Coordinator : Ms.M.Jasmin, Assoc. Professor.

Instructor(s)

Name of the instructor	Class handling	Office location	Office phone	Email (domain: @bharathuniv.ac.in)	Consultation
Ms.M.Jasmin	IV	SA 006		jasmine.ece	12.30 -1.30 PM

Relationship to other courses

Pre – requiste	:	Principles of Digital Electronics
ine requise	•	T Interpres of Digital Electronics

Assume Knowledge : Basic knowledge in Digital System Design and Electronic circuits

Following courses : Nil

Syllabus Contents

UNIT I INTRODUCTION TO MOS TRANSISTOR

MOS Fabrication, Enhancement mode and Depletion mode MOSFET, ,Threshold voltage derivation – body effect – Drain current Vs voltage derivation – channel length modulation – CMOS technologies, CMOS Fabrication: n-well – p-well – twin tub –DC transfer characteristics

UNIT II MOS CIRCUITS DESIGN PROCESS AND CMOS LOGIC GATES 12HOURS

MOS Layers, Stick Diagram, Layout Diagram, Propagation Delays, CMOS Static Logic Transmission Gate Logic, Tri-State Logic, Pass Transistor Logic, Dynamic CMOS Logic, Domino CMOS Logic, Differential Cascade Voltage Switch (DCVS) Logic, Scaling of MOS Circuits.

UNIT III VLSI IMPLEMENTATION STRATEGIES

Introduction – Design of Adders: carry look ahead-carry select-carry save.Design of multipliers: Array – Braun array – Baugh-Wooley Array.Introduction to FPGA – Full custom and Semi custom design, Standard cell design and cell libraries, FPGA building block architectures

UNIT IV CMOS TESTING

Need for testing- Testers, Text fixtures and test programs- Logic verification- Silicon debug principles-Manufacturing test – Design for testability – Boundary scan

UNIT V SPECIFICATION USING VERILOG HDL

Basic concepts- identifiers- gate primitives, gate delays, operators, timing controls, procedural assignments conditional statements, Data flow and RTL, structural gate levelswitch level modeling, Design hierarchies, Behavioral and RTL modeling, Test benches, Design of decoder, equality detector, comparator, priorityencoder, half adder, full adder, Ripple carry adder, D latch and D flip flop

Text book(s) and/or required materials

TEXT BOOKS

T1. Weste and Harris: CMOS VLSI DESIGN (Third edition) Pearson Education, 2005 T2. Uyemura J.P: Introduction to VLSI circuits and systems, Wiley 2002.

Page **2** of **7**

12HOURS

12HOURS

12HOURS

12HOURS

- R1 D.A Pucknell & K.Eshraghian Basic VLSI Design, Third edition, PHI,2003
- R2 Wayne Wolf, Modern VLSI design, Pearson Education, 2003
- R3 M.J.S.Smith: Application specific integrated circuits, Pearson Education, 1997
- R4 J.Bhasker: Verilog HDL primer, BS publication, 2001
- R5 Ciletti Advanced Digital Design with the Verilog HDL, Prentice Hall of India, 2003
- R6. https://en.wikipedia.org/wiki/Very-large-scale_integration

Computer usage: To model a Combinational circuit and Sequential circuit using hardware description language Verilog HDL and validate its functionality.

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area : Communication | Signal Processing | Electronics | VLSI | Embedded

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st Week	Session 1 to 18	2 Periods
2	Cycle Test-2	September 2 nd Week	Session 19 to 36	2 Periods
3	Model Test	October 2 nd Week	Session 1 to 60	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

Learn about the concepts starting with individual CMOS, basic circuit building blocks, and broad view of both combinational and sequential circuits.	Correlates to program outcome		
	Н	М	L
1. To learn about IC fabrication, MOS transistor action and its parameters.	h	a,i	-
2. Express the Layout of simple MOS circuit using Lambda based design rules.	c,i,j	a,h	-
3. About the implementation of various adders and multipliers in VLSI technology	d,j,k	a,c	-
4. About the design styles of FPGA.	e,j	a,h	-
5. About testing of CMOS circuits.	b,i	-	-
6.To understand the concepts of modeling a digital system using Hardware Description Language.	a,e,k	_	-

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture

Session	Topics	Problem Solving (Yes/No)	Text / Chapter	
UNITI : INTRODUC	TION TO MOS TRANSISTOR			
1,2	MOS Fabrication No		R1-Chapter 1	
3	Enhancement mode and Depletion mode MOSFET	No	T1-Chapter 2	
4	Threshold voltage derivation	No		
5	Drain current Vs voltage derivation	No		
6	channel length modulation	No		
7	CMOS technologies	No		
8	n-Well Process	No	R1-Chapter 1	
9	p-well Process	No		
10	Twin tub Process	No		
11,12	Dc transfer characteristics	No	T1-Chapter 2	
UNIT II MOS CIRCU	JITS DESIGN PROCESS AND CMOS LOGIC GA	TES		
13,14	Stick Diagram	No	R1-Chapter 3	
15,16	Layout Diagram	No		
17	Propagation Delays	No	T1-Chapter 6	
18	CMOS Static Logic	No		
19	Transmission Gate Logic	No		
20	Tri-State Logic	No		
21	Pass Transistor Logic, Dynamic CMOS	No		
	Logic			
22	Domino CMOS Logic,., Differential	No		
	Cascade Voltage Switch (DCVS) Logic			
23,24	Scaling of MOS Circuits.	caling of MOS Circuits. No R1-Cl		
UNIT III VLSI IMPL	EMENTATION STRATEGIES			
25	Design of Adders: carry look ahead	No	R1-Chapter 8	
26	carry select and carry save adders No		_	
27	Design of Array multipliers	No		
28	Braun array multiplier	No	_	
29	Baugh-Wooley Array	No		
30	Introduction to FPGA	No	R3 –Chapter 1	
31	Full custom and Semi custom design	No		
32,33	Standard cell design and cell libraries	No	-	
34,35	FPGA building block architectures	No		
36	Summary and Quiz on Unit III	No		
UNITIV- CMOS TES	STING			
37,38	Need for testing	Νο	T1 –Chapter 12	
39	Testers, Text fixtures	No		
40	test programs	No		
41,42	Logic verification	No		
43	Silicon debug principles	No		

44	Manufacturing test	No		
45	Design for testability	No		
46,47	Boundary scan	No	7	
48	Summary and Quiz on Unit III	No		
UNIT-V- SPECIFICA	ATION USING VERILOG HDL			
49	Design Hierarchies	No	R4 Chapter 1,2,5	
50	Basic concepts	No		
51	gate delays, operators, timing controls	No		
52,53	procedural assignments conditional	No		
	statements			
54	Data Flow Modeling	No		
55	Gate Level Modeling	No		
56	Switch Level Modeling	No		
57	Structural Level Modeling	No		
58,59,60	Design of combinational and Sequential Logic circuits circuits in all types of modeling	No		

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- I Tutorials which allow the students to gain knowledge in programming of Digital System logic using Verilog.
- 2 Laboratory sessions, which support the formal lecture material and also develop the programming
- skill of the students
- 2 Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	10%
Assignment /Seminar/online test/quiz	-	5%
Attendance	-	5%
Final exam	-	70%

Prepared by: M.Jasmin, Assoc Professor, Department of ECE

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

a. An ability to apply knowledge of mathematics, science, and engineering

- b. An ability to design and conduct experiments, as well as to analyze and interpret data
- c. An ability to design a hardware and software system, component, or process to meet desired needs within realistic

constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

d. An ability to function on multidisciplinary teams

e. An ability to identify, formulate, and solve engineering problems

f. An understanding of professional and ethical responsibility

g. An ability to communicate effectively

h. The broad education necessary to understand the impact of engineering solutions in a global, economic,

environmental, and societal context

i. A recognition of the need for, and an ability to engage in life-long learning

j. A knowledge of contemporary issues

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

PEO1: PREPARATION

Electronics Engineering graduates are provided with a strong foundation to passionately apply the fundamental principles of mathematics, science, and engineering knowledge to solve technical problems and also to combine fundamental knowledge of engineering principles with modern techniques to solve realistic, unstructured problems that arise in the field of Engineering and non-engineering efficiently and cost effectively.

PEO2: CORE COMPETENCE

Electronics engineering graduates have proficiency to enhance the skills and experience to apply their engineering knowledge, critical thinking and problem solving abilities in professional engineering practice for a wide variety of technical applications, including the design and usage of modern tools for improvement in the field of Electronics and Communication Engineering.

PEO3: PROFESSIONALISM

Electronics Engineering Graduates will be expected to pursue life-long learning by successfully participating in post graduate or any other professional program for continuous improvement which is a requisite for a successful engineer to become a leader in the work force or educational sector.

PEO4: SKILL

Electronics Engineering Graduates will become skilled in soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, interpersonal relationship, group discussion and leadership ability to become a better professional.

PEO5: ETHICS

Electronics Engineering Graduates are morally boosted to make decisions that are ethical, safe and environmentallyresponsible and also to innovate continuously for societal improvement.

Course Teacher	Signature	
Ms M.Jasmin		

Course Coordinator

HOD/ECE